

Généralités sur les fonctions

Exercice 1

On donne trois expressions de l'image f(x) d'un réel x différent de 3 par une fonction f:

$$f_1(x) = 1 + \frac{7 - 2x}{x - 3}$$

$$f_2(x) = \frac{4-x}{x-3}$$

$$f_3(x) = -1 + \frac{1}{x - 3}$$

- 1. Vérifier que ces trois expressions sont égales
- 2. Dans chacun des cas suivants, choisir l'expression la mieux adaptée et répondre à la question :
 - a. Etudier les variations de la fonction f
 - b. Résoudre l'équation f(x) = 0
 - c. Pour quelles valeurs de *x* la courbe représentative de *f* est-elle au-dessus de la droite d'équation *y* =1

Exercice 2

Soit la fonction f définie par $f(x) = \frac{2x^2}{x^2 + 3}$

- 1. Déterminer les réel a et b tel que $f(x) = a + \frac{b}{x^2 + 1}$
- 2. Montrer que f est majorée par 2

Exercice 3

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 6x + 4$. P est la courbe représentative de f

- 1. Vérifier que $f(x) = (x+3)^2 5$
- 2. Donner la transformation qui permet d'obtenir la courbe P à partir d'une courbe connue ;
- 3. En déduire le tableau de variation de la fonction f

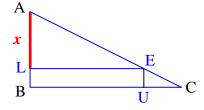
FARID

Généralités sur les fonctions

Exercice 4

Soit ABC un triangle rectangle en B tel que AB=6 et BC=12 E étant un point du segment [AC], on considère ses projetés orthogonaux L et U respectivement sur

les segments [AB] et [BC] définissant ainsi un rectang le BLEU On pose AL = x



- 1. a. Prouver que $\frac{AL}{AB} = \frac{BU}{BC}$
 - b. Calculer l'aire, en fonction de x du rectangle BLEU puis montrer qu'elle peut s'écrire : $f(x) = 18 2(x-3)^2$
- 2. Donner la représentation graphique de la fonction f dans un plan muni d'un repère orthogonal (O; \vec{i} , \vec{j}). On prendra pour unité 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

On rappelle que la fonction est définie sur [0; 6]

- 3. A l'aide de la représentation graphique, faire une conjecture sur le sens de variations de *f* puis la prouver .
- 4. Par le calcul, déterminer les distances AL correspondant à une aire de 10
- 5. Résoudre, à l'aide d'un tableau de signe, l'inéquation f(x)>16

Exercice 5

On considère la fonction f définie par $f(x) = 1 + \frac{2x+2}{x^2+2x+2}$ et C_f sa la courbe représentative

dans un repère orthogonal du plan.

- 1. Montrer que la fonction est définie sur ${\mathbb R}$
- 2. Résoudre f(x)=0
- 3. Donner le signe de f(x) suivant les valeurs de x
- 4. Montrer que pour tout réel x, $f(x) \le 2$
- 5. Montrer que le point I(-1;1) est le centre de symétrie de C_f

Généralités sur les fonctions

Exercice 6

On considère la fonction f définie par $f(x) = 1 - \frac{2}{x^2 - 2x + 2}$ et C_f sa courbe représentative dans un repère orthonormé du plan .

- 1. Montrer que la fonction est définie sur ℝ
- 2. Montrer que la droite d'équation x=1 est axe de symétrie pour C_f
- 3. Résoudre f(x)=0
- 4. Montrer que pour tout réel x, $-1 \le f(x) < 1$

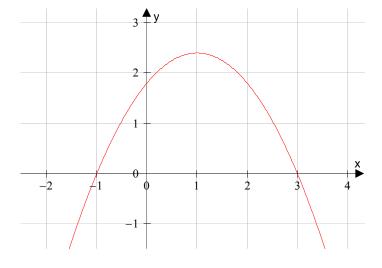
Exercice 7

f est la fonction définie sur \mathbb{R} par :

$$f(x) = ax^2 + bx + c$$

et dont la représentation graphique est la parabole tracée partiellement ci-contre

- 1. Le réel *a* est-il positif ? pourquoi ?
- 2. Quel est le signe du discriminant ?
- 3. Déterminer les réels b et c sachant que a = -0.6

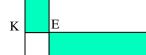


Exercice 8

Soit ABCD un rectangle tel que AB=5 et BC=7. K est un point de [AB] et L un point de [BC]

Les droites (KK') et (LL') sont parallèles aux côtés du rectangle et définissent le carré BLEK

On pose BL = x



L'

A

- 1. Dans quel intervalle varie x?
- 2. Exprimer A(x), l'aire hachurée en fonction de x
- 3. Pour quelle valeurs de x cette aire est-elle maximale ?

D

K

Exercice 1

1. Pour tout x réel différent de 3:

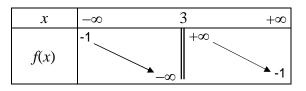
$$f_1(x) = 1 + \frac{7 - 2x}{x - 3} = \frac{x - 3 + 7 - 2x}{x - 3} = \frac{4 - x}{x - 3} = f_2(x)$$

$$f_3(x) = -1 + \frac{1}{x-3} = \frac{-(x-3)+1}{x-3} = \frac{4-x}{x-3} = f_2(x)$$

Les trois expressions sont donc égales

1. a. Soit
$$f(x) = -1 + \frac{1}{x-3}$$

On a donc le tableau suivant :



1. b. L'équation f(x) = 0 est équivalente à l'équation $f_2(x) = 0$

$$\Leftrightarrow \frac{4-x}{x-3} = 0 \Leftrightarrow 4-x = 0 \text{ et } x-3 \neq 0$$

L'équation f(x) = 0 a donc une seule solution : $S = \{4\}$

1. c. Pour trouver les valeurs de x pour lesquelles la courbe représentative de f est au-dessus de la droite d'équation y = 1, il faut résoudre l'inéquation f(x) > 1, ainsi

$$f(x) > 1$$
 \Leftrightarrow $f_1(x)$ \Leftrightarrow $1 + \frac{7 - 2x}{x - 3} > 1$ \Leftrightarrow $\frac{7 - 2x}{x - 3} > 0$

Dressons un tableau de signe :

Х	$-\infty$	3		3,5		$+\infty$
7-2x	+		+	ø	_	
<i>x</i> –3	_	0	+		+	
$\frac{7-2x}{x-3}$	_		+	0	_	

La courbe représentative de f est au-dessus de la droite d'équation y=1 sur lintervalle $\]$ 3; 3,5].

II. 1.
$$f(x) = a + \frac{b}{x^2 + 3} = \frac{a(x^2 + 3) + b}{x^2 + 3}$$
$$= \frac{ax^2 + (3a + b)}{x^2 + 3}$$

Par identification avec l'expression $f(x) = \frac{2x^2}{x^2 + 3}$ on obtient $\begin{cases} a = 2 \\ 3a + b = 0 \end{cases}$ on en déduit $\begin{cases} a = 2 \\ b = -6 \end{cases}$

Exercice 2

1. Pour tout x réel, $f(x) = a + \frac{b}{x^2 + 3} = \frac{a(x^2 + 3) + b}{x^2 + 3} = \frac{ax^2 + (3a + b)}{x^2 + 3}$

Par identification avec l'expression $f(x) = \frac{2x^2}{x^2 + 3}$, on obtient $\begin{cases} a = 2 \\ 3a + b = 0 \end{cases}$, on en déduit $\begin{cases} a = 2 \\ b = -6 \end{cases}$

Par conséquent, $f(x) = 2 - \frac{6}{x^2 + 3}$

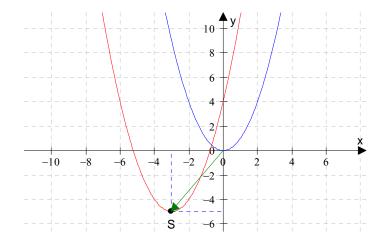
2. Un carré est toujours positif donc $x^2 + 3$ est strictement positif,

Par conséquent, pour tous réels x, $\frac{1}{x^2+3} > 0 \Leftrightarrow \frac{-6}{x^2+3} < 0 \Leftrightarrow 2 - \frac{6}{x^2+3} < 2 \Leftrightarrow f(x) < 2$

Ce qui montre que f est majorée par 2

Exercice 3

- 1. Pour tout x réel, $(x+3)^2 5 = x^2 + 6x + 9 5 = x^2 + 6x + 4 = (x+3)^2 5 = f(x)$
- 2. L'expression $f(x) = (x+3)^2 5$ permet de remarquer que la fonction f est associée à la fonction « carré », la courbe P se déduit de la parabole d'équation $y = x^2$ par la translation de vecteur \vec{u} (-3; -5) Le sommet qui était en O(0;0) se trouvera en S(-3; -5)



2. On en déduit le tableau de variation suivant

Exercice 4

1.a. L appartient à [AB], E appartient à [AC] et (LE)//(BC) donc d'après le théorème de Thalès,

on a:
$$\frac{AL}{AB} = \frac{AE}{AC}$$

De même, en considérant que (EU)//(AB) on a $\frac{AE}{AC} = \frac{BU}{BC}$

Par conséquent
$$\frac{AL}{AB} = \frac{BU}{BC}$$

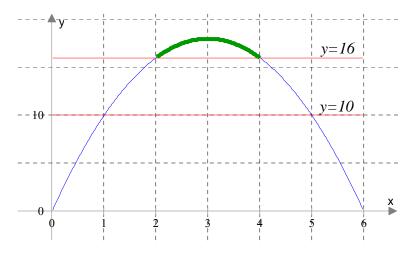
1.b. L'aire du rectangle BLEU vaut BU×BL, or BL=AB-AL = 6-x et BU = $\frac{AL \times BC}{AB} = \frac{12x}{6} = 2x$

donc
$$f(x) = 2x (6-x) = 12x - 2x^2$$

Développons:
$$18-2(x-3)^2 = 18-2(x^2-6x+9) = 18-2x^2+12x-18 = -2x^2+12x$$

Par conséquent,
$$f(x) = 18 - 2(x-3)^2$$

2. La représentation graphique de f:



3. D'après la courbe, on remarque que la fonction f est strictemnet croissante sur [0;3]et strictement décroissante sur [3;6]. Prouvons-le:

f est dérivable sur [0;6] et on a pour tout x de [0;6], f(x) = 12 - 4x

Х	0		3		6
f'(x)		+	0	_	

D'où le résultat.

4. Déterminer les distances AL correspondant à une aire de 10, revient à résoudre léquation :

$$f(x) = 10$$
 \Leftrightarrow $18 - 2(x - 3)^2 = 10$ \Leftrightarrow $8 - 2(x - 3)^2 = 0$ \Leftrightarrow $4 - (x - 3)^2 = 0$
 \Leftrightarrow $(2 - (x - 3))(2 + (x - 3)) = 0$ \Leftrightarrow $(5 - x)(x - 1) = 0$ \Leftrightarrow $x = 1$ ou $x = 5$

Il faut donc prendre AL=1 ou AL=5 pour avoir une aire de 10

(Ce qui apparait vérifier sur le graphique)

5.
$$f(x) > 16 \Leftrightarrow 18 - 2(x-3)^2 - 16 > 0 \Leftrightarrow 2 - 2(x-3)^2 > 0 \Leftrightarrow 2(1 - (x-3)^2) > 0$$

 $\Leftrightarrow 2(1 - (x-3))(1 + (x-3)) > 0 \Leftrightarrow 2(4-x)(x-2) > 0$

Х	$-\infty$	2		4		$+\infty$
4– <i>x</i>	+		+	0	_	
<i>x</i> –2	_	0	+		+	
f(x) - 16	_	0	+	0	_	

Donc l'ensemble de solutions est $S =]2;4[\cdot (Ce qui apparait vérifier sur le graphique)]$

Exercice 5

1. Calculons le discriminant du dénominateur :

$$\Delta = b^2 - 4ac = (-2)^2 - 4 \times 1 \times 2 = -4$$

Comme il est négatif le <u>dénominateur ne s'annule jamais</u> et la fonction f est définie sur $\mathbb R$

2. Pour tout x réel,
$$f(x) = 1 + \frac{2x+2}{x^2 + 2x + 2} = \frac{x^2 + 4x + 4}{x^2 - 2x + 2}$$

$$f(x) = 0 \Leftrightarrow x^2 + 4x + 4 = 0 \Leftrightarrow (x+2)^2 = 0 \Leftrightarrow x+2 = 0 \Leftrightarrow x = -2$$

Donc l'ensemble de solution est $S = \{-2\}$.

3. Pour étudier le signe de f(x), il faut étudier le signe du numérateur et celui du dénominateur : or nous avons vu à la question 1 que le dénominateur ne s'annulait pas, il garde donc toujours le signe de a=1. Il est résulte que pour tout x réel , $x^2-2x+2 > 0$ ·

A la question 2, nous avons vu que le numérateur s'écrit : $x^2+4x+4=(x+2)^2$

X	$-\infty$	-2		8
$x^2 + 4x + 4$	+	ф	+	
$x^2 + 2x + 2$	+		+	
f(x)	+	ф	+	•

4. Pour prouver que 2 est un majorant, étudions le signe de la différence 2-f(x):

Pour tout x réel, on a :

$$2 - f(x) = 2 - \left(1 + \frac{2x + 2}{x^2 + 2x + 2}\right) = 1 - \frac{2x + 2}{x^2 + 2x + 2} = \frac{x^2}{x^2 + 2x + 2} > 0$$

5. Le domaine de définition est \mathbb{R} il est donc symétrique par rapport à -1

$$f(-2-x) = 1 + \frac{2(-2-x)+2}{(-2-x)^2 + 2(-2-x)+2} = 1 - \frac{2x+2}{x^2+2 + x + 1}$$

par conséquent :
$$f(-2+x) + f(x) = 1 - \frac{2x+2}{x+2 + x+1} + 1 + \frac{2x+2}{x^2+2x+2} = 2$$

On peut donc affirmer que le point I(-1; 1) de centre de symétrie pour C_f

Exercice 6

1. Le dénominateur est un trinôme du second degré, calculons son discriminant :

$$\Delta = b^2 - 4ac = 2^2 - 4 \times 1 \times 2 = -4$$

Comme il est strictement négatif le dénominateur ne s'annule jamais et la fonction f est définie sur \mathbb{R}

2. Le domaine de définition est \mathbb{R} il est donc symétrique par rapport à 1

Pour tout réel x, on a
$$f(2-x) = 1 - \frac{2}{(2-x)^2 - 2(2-x) + 2} = 1 - \frac{2}{x^2 - 2x + 2} = f(x)$$

Par conséquent on peut affirmer que la droite d'équation x = 1 est axe de symétrie pour C_f .

3. Remarquons tout d'abord que pour tout x réel,

$$f(x) = 1 - \frac{2}{x^2 - 2x + 2} = \frac{x^2 - 2x}{x^2 - 2x + 2}$$

et que le dénominateur ne s'annulant jamais donc

$$f(x) = 0 \Leftrightarrow x^2 - 2x = 0 \Leftrightarrow x(x-2) = 0 \Leftrightarrow x = 0 \text{ ou } x = 2$$

Il en résulte que l'ensemble de solutions est $S = \{0; 2\}$

4. On peut écrire $f(x) = 1 - \frac{2}{(x-1)^2 + 1}$

Pour tout réel x, on a $(x-1)^2 \ge 0$

$$(x-1)^2 \geqslant 0$$

$$(x-1)^2 + 1 \geqslant 1$$

Ou encore

$$0 < \frac{1}{(x-1)^2 + 1} \le 1$$

$$0 < \frac{1}{(x-1)^2 + 1} \le 1$$
 et en multiplia nt par -2 $0 > \frac{-2}{(x-1)^2 + 1} \ge -2$

puis en ajoutant 1

$$1 > 1 - \frac{2}{(x-1)^2 + 1} \geqslant -1$$

Nous avons donc prouver que pour tout réel x, $-1 \le f(x) < 1$

Exercice 7

- 1. Le réel n'est pas positif mais négatif car la parabole est tournée vers le bas.
- 2. La parabole coupe l'axe des abscisses deux fois, ce qui signifie que le trinôme a deux racines Le discriminant est donc strictement positif
- 3. Il faut penser à utilise la forme factorisée :

$$f(x) = a(x - x_1)(x - x_2) = -0.6(x - (-1))(x - 3) = -0.6(x + 1)(x - 3) = -0.6(x^2 - 2x - 3)$$

Donc pour tout x réel, $f(x) = -0.6x^2 + 1.2x + 1.8$

Exercice 8

- 1. x est une longueur qui est inférieure à AB et à BC donc $x \in [0; 5]$
- 2. L'aire hachurée vaut : $A(x) = LE \times LC + UE \times UA = x(7-x) + x(5-x) = -2x^2 + 12x$
- 3. Pour obtenir le maximum, il faire étudier les variations de la fonction A, il faut écrire A(x)

sous forme canique:

$$A(x) = -2x^2 + 12x = -2(x^2 - 6x) = -2((x - 3)^2 - 9) = -2(x - 3)^2 + 18$$

On en déduit que la courbe représentative de A est l'image de la parabole d'équation $y = -2x^2$ par la

translation de vecteur \vec{u} (3;18). On a donc le tableau de variation suivant :

X	0	3	5
A(x)	0 —	18	10

L'aire maximale est de 18 et elle est obtenue pour x = 3