Lycée IBN KHALDOUN Radès Mr ABIDI Farid

Devoir de contrôle n°1 2^{ème} S₂

Durée: 1 heure

26 octobre 2009

Exercice 1 (4,5 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Indiquer sur la copie le numéro de la guestion et la lettre correspondant à la réponse choisie. Aucune iustification n'est demandée.

1. Les solutions de l'équation $3x^2 + x - 4 = 0$ sont :

a)
$$-1$$
 et $-\frac{4}{3}$; **b)** 1 et $-\frac{4}{3}$; **c)** 1 et $\frac{4}{3}$

b) 1 et
$$-\frac{4}{3}$$
;

c) 1 et
$$\frac{4}{3}$$

2. Si a et b sont deux réels tels que : a + b = 1 et a.b = -6 alors a et b sont solutions de l'équation :

a)
$$x^2 - x - 6 = 0$$
; **b)** $x^2 + x - 6 = 0$;

b)
$$x^2 + x - 6 = 0$$

c)
$$x^2 + x + 6 = 0$$

3. Si le signe d'un trinôme du second degré $ax^2 + bx + c$ est donné par le tableau ci-dessous alors :

X	∞		$-\frac{1}{2}$		1		+∞
$ax^2 + bx + c = 0$		-	0	+	0	-	

$$\mathbf{a}$$
) $\mathbf{a} > 0$

a)
$$a > 0$$
; **b**) $c > 0$;

c)
$$\frac{a}{b} = \frac{1}{2}$$

EXERCICE 2 (5,5 points)

- 1. Soit l'équation (E) : $x^2 2x\sqrt{5} 8 = 0$
 - a) Sans calculer le discriminant, montrer que l'équation (E) admet deux racines distinctes.
 - b) Sans calculer les racines x' et x" de l'équation (E), calculer les expressions suivantes:

$$A = (2x' + 1)(2x'' + 1)$$
 et $B = x'^2 + x''^2$.

- 2. a) Développer et simplifier $(2\sqrt{2} + 1)^2$.
 - b) Résoudre alors dans \mathbb{R} l'inéquation $x^2 + x 2 \sqrt{2} \le 0$.

EXERCICE 3 (10 points)

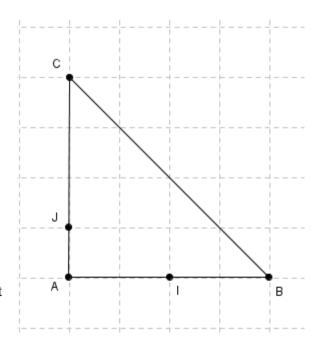
L'unité de longueur étant le centimètre. Soit ABC un triangle rectangle isocèle en A tel que AB = 4. On note I le milieu du segment

[AB] et J le point tel que $\overrightarrow{AJ} = \frac{1}{4}\overrightarrow{AC}$.

- 1. Soit L le point défini par $\overrightarrow{AL} = -\frac{1}{2}\overrightarrow{AC}$.
 - Montrer que CL = 2CJ. a)
 - Placer le point L sur la figure.
- 2. On rapporte le plan au repère $\left(A, \frac{1}{2}\overrightarrow{AI}, \overrightarrow{AJ}\right)$.

Déterminer les coordonnées des points A, I, J, B, C et L.

- 3. Pour tout réel a non nul, on considère le point M de coordonnées (2-2a, a).
 - a) Montrer que pour tout a réel non nul, les points I, J et M sont alignés.
 - b) Déterminer la valeur de a pour laquelle les vecteurs \overrightarrow{MI} et \overrightarrow{ML} sont orthogonaux. Placer M pour la valeur de a trouvée.



Corrigé

Exercice 1:

1.b); 2.a); 3.b)

Exercice 2:

- 1. a) On a: a = 1, $b = -2\sqrt{5}$ et c = -8 donc a et c sont de signe contraires. D'où l'équation $x^2 - 2x\sqrt{5} - 8 = 0$ admet deux racines.
 - b) Appelons x' et x" les racines de l'équation $x^2 2x\sqrt{5} 8 = 0$. On a donc: $x' + x'' = -2\sqrt{5}$ et $x' \cdot x'' = -8$ $A = (2x'+1)(2x''+1) = 4x'x'' + 2(x'+x'') + 1 = 4.(-8) + 2.(-2\sqrt{5}) + 1 = -4\sqrt{5} - 31.$ $B = x'^2 + x''^2 = (x' + x'')^2 - 2x'x'' = (-2\sqrt{5})^2 - 2(-8) = 20 + 16 = 36.$
- 2. a) $(2\sqrt{2}+1)^2 = 8+4\sqrt{2}+1=9+4\sqrt{2}$.
 - b) Le discriminant du trinôme $x^2 + x 2 \sqrt{2}$ est $\Delta = 1 4(-2 \sqrt{2}) = 1 + 8 + 4\sqrt{2} = 9 + 4\sqrt{2}$.

On en déduit que $\Delta = (2\sqrt{2} + 1)^2$ et qu'une racine de Δ est $(2\sqrt{2} + 1)$.

Les racines de l'équation $x^2 + x - 2 - \sqrt{2} = 0$ sont donc :

$$x_1 = \frac{-1 - \left(2\sqrt{2} + 1\right)}{2} = \frac{-2 - 2\sqrt{2}}{2} = -1 - \sqrt{2}$$
 et $x_2 = \frac{-1 + \left(2\sqrt{2} + 1\right)}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$.

Le signe du trinôme $x^2 + x - 2 - \sqrt{2}$ est donné par le tableau ci-dessous :

X	$-\infty$		$-1-\sqrt{2}$		$\sqrt{2}$		+∞
$x^2 + x - 2 - \sqrt{2}$		+	0	-	0	+	

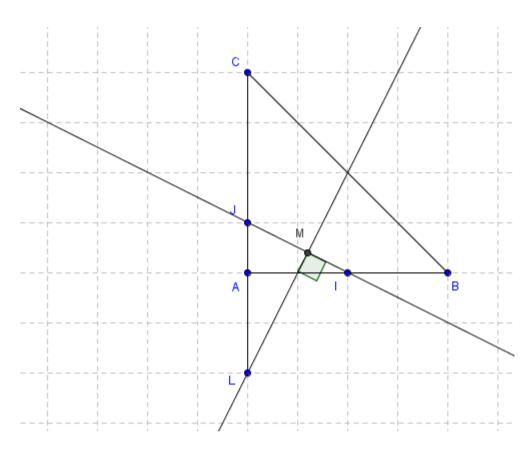
Par suite, l'ensemble de solution de l'inéquation $x^2 + x - 2 - \sqrt{2} \le 0$ est $\left[-1 - \sqrt{2}; \sqrt{2} \right]$.

Exercice 3:

1.a) On a:
$$\overrightarrow{CL} = \overrightarrow{CA} + \overrightarrow{AL} = \overrightarrow{CA} - \frac{1}{2}\overrightarrow{AC} = \overrightarrow{CA} + \frac{1}{2}\overrightarrow{CA} = \frac{3}{2}\overrightarrow{CA}$$
.
Or $\overrightarrow{AJ} = \frac{1}{4}\overrightarrow{AC}$ donc $\overrightarrow{AC} + \overrightarrow{CJ} = \frac{1}{4}\overrightarrow{AC}$ donc $\overrightarrow{CJ} = \frac{1}{4}\overrightarrow{AC} - \overrightarrow{AC} = -\frac{3}{4}\overrightarrow{AC}$
D'où $\overrightarrow{AC} = -\frac{4}{3}\overrightarrow{CJ}$ ou encore $\overrightarrow{CA} = \frac{4}{3}\overrightarrow{CJ}$. Il en résulte que : $\overrightarrow{CL} = \frac{3}{2}\overrightarrow{CA} = \frac{3}{2}\left(\frac{4}{3}\overrightarrow{CJ}\right) = 2\overrightarrow{CJ}$.

b) Voir figure

Corrigé



 $2. \ \, \text{Dans le repère}\left(A, \frac{1}{2}\overrightarrow{AI}, \overrightarrow{AJ}\right): \ \, A(0,0) \ , \ I(2,0) \ , \ J(0,1) \ , \ B(4,0) \ \text{et} \ \, C(\ 0,4).$

Comme $\overrightarrow{AL} = -\frac{1}{2}\overrightarrow{AC} = -\frac{1}{2}.4.\overrightarrow{AJ} = -2\overrightarrow{AJ}$, alors L(0, -2).

3.a) On a $\overrightarrow{IJ} \begin{pmatrix} 0-2 \\ 1-0 \end{pmatrix}$ donc $\overrightarrow{IJ} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et $\overrightarrow{IM} \begin{pmatrix} 2-2a-2 \\ a-0 \end{pmatrix}$ donc $\overrightarrow{IM} \begin{pmatrix} -2a \\ a \end{pmatrix}$.

Le déterminant des vecteurs \overrightarrow{IJ} et \overrightarrow{IM} est $\begin{vmatrix} -2 & -2a \\ 1 & a \end{vmatrix} = -2 \times a - 1 \times (-2a) = 2a - 2a = 0$.

Donc les vecteurs \overrightarrow{IJ} et \overrightarrow{IM} sont colinéaires d'où les points I, J et M sont alignés.

b) On a
$$\overrightarrow{MI} \begin{pmatrix} 2a \\ -a \end{pmatrix}$$
 et $\overrightarrow{ML} \begin{pmatrix} 0 - (2 - 2a) \\ -2 - a \end{pmatrix}$ donc $\overrightarrow{ML} \begin{pmatrix} 2a - 2 \\ -a - 2 \end{pmatrix}$.

$$\overrightarrow{MI} \perp \overrightarrow{ML}$$
 équivaut à $2a \times (2a-2) + (-a) \times (-a-2) = 0$

équivaut à
$$4a^2 - 4a + a^2 + 2a = 0$$

équivaut à
$$5a^2 - 2a = 0$$

équivaut à
$$a(5a-2)=0$$

équivaut à
$$a = 0$$
 ou $a = \frac{2}{5}$

Or
$$a \neq 0$$
, donc $a = \frac{2}{5}$.