

Exercice n°1:

On considère la courbe d'équation $y = \frac{x(ax+b)}{3(x-c)^2}$ où a, b et c sont trois réels, dans un repère orthonormé $(O; \vec{i}; \vec{j}).$

Déterminer les réels a, b et c pour que la courbe ait deux asymptotes d'équations respectives x = 2 et $y = \frac{2}{3}$ et que la tangente en O ait pour équation $y = -\frac{1}{2}x$

Exercice n°2:

Soit la fonction f définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par $f(x) = \frac{2x^2 - x - 1}{2x - 3}$ et C_f sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ d'unité graphique 1 cm.

- 1. Calcul des limites.
 - Déterminer les limites de la fonction f en $+\infty$ puis en $-\infty$.
 - Déterminer la limites de la fonction f en $\frac{3}{2}$. En donner une interprétation graphique. b.
- 2. Etude des variations de la fonction f.
 - Calculer la dérivée f'(x)a.
 - b. Etudier son signe.
 - Donner le tableau de variation de f. c.
- 3. Intersection avec les axes de coordonnées.
 - Donner les coordonnées du ou des point(s) d'intersection de la courbe de f avec de l'axe des a. ordonnées.
 - Donner les coordonnées du ou des points d'intersection de la courbe de f avec l'axe des b. abscisses.
- 4. Asymptote oblique.
 - Déterminer les réels a, b et c tels que, pour tout $x \neq \frac{3}{2}$, on ait $f(x) = ax + b + \frac{c}{2x 3}$ a.
 - b. Montrer que 1a droite (Δ) d'équation y = x + 1 est une asymptote oblique à la courbe C_f .
 - Etudier la position relative de la droite (Δ) et de la courbe C_f . c.

Mr ABIDI FARID 3A

Etude de fonctions rationnelles

- 5. Centre de symétrie.
 - a. Déterminer les coordonnées du point d'intersection des deux asymptotes.
 - b. Montrer que ce point d'intersection est centre de symétrie de la courbe C_f .
- 6. Donner l'équation de la tangente (T) au point d'abscisse 1.
- 7. Déterminer les coordonnées du point K de la courbe C_f où la tangente (T') est parallèle à la droite d'équation y = -3x + 3
- 8. Tracer les tangentes (T), (T'), les tangentes horizontales , la droite (Δ), les asymptotes éventuelles, le centre de symétrie et la courbe C_f .
- 9. Soit Δ_m la droite d'équation y = m avec m un réel. Déterminer graphiquement, suivant les valeurs de m, le nombre de solutions de l'équation f(x) = m.

Année scolaire 2010-2011 page 2 / 7

CORRIGE

Exercice n°1:

Posons $f(x) = \frac{x(ax+b)}{3(x-c)^2}$, pour tout réel x différent de 2.

- la courbe admet une asymptote d'équation $x = 2 \Rightarrow \lim_{x \to 2} f(x) = \pm \infty$ Or $\lim_{x \to 2} x(ax + b) = 4a + 2b$ et $\lim_{x \to 2} 3(x - c)^2 = 3(2 - c)^2 \Rightarrow 2 - c = 0 \Rightarrow c = 2$
- la courbe admet une asymptote d'équation $y = \frac{2}{3}$ $\Rightarrow \lim_{x \to \pm \infty} f(x) = \frac{2}{3}$ Or, en utilisant la règle sur les fonctions rationnelles citée dans l'exercice n°1, on obtient : $\lim_{x \to \pm \infty} \frac{x(ax+b)}{3(x-2)^2} = \frac{a}{3}$ $\Rightarrow \frac{a}{3} = \frac{2}{3}$ $\Rightarrow \boxed{a=2}$
- La courbe admet une tangente en O d'équation $y = -\frac{1}{2}x \implies f'(x) = -\frac{1}{2}$.

On calcule la dérivée :
$$u(x) = 2x^2 + bx$$
$$v(x) = 3(x-2)^2$$
$$v'(x) = 6(x-2)$$

D'où
$$f'(x) = \frac{(4x+b)(3(x-2)^2 - (2x^2 + bx)(6(x-2))}{[3(x-2)^2]^2} \implies f'(0) = \frac{b \times (3 \times (-2)^2)}{[3(-2)^2]^2} = \frac{b}{12}$$

$$\Rightarrow \frac{b}{12} = -\frac{1}{2} \Rightarrow \mathbf{b} = -\mathbf{6}$$

• Conclusion: $y = \frac{x(2x-6)}{3(x-2)^2}$

Exercice n°2:

CORRIGE

1. Calcul des limites.

a. Pour calculer la limite d'une fonction rationnelle en $+\infty$ et en $-\infty$, on détermine la limite du quotient des termes de plus haut degré.

On a
$$\lim_{x \to +\infty} \frac{2x^2 - x - 1}{2x - 3} = \lim_{x \to +\infty} \frac{2x^2}{2x} = \lim_{x \to +\infty} x = +\infty$$
 Donc $\lim_{x \to +\infty} f(x) = +\infty$

Et
$$\lim_{x \to -\infty} \frac{2x^2 - x - 1}{2x - 3} = \lim_{x \to -\infty} \frac{2x^2}{2x} = \lim_{x \to -\infty} x = -\infty$$
 Donc $\lim_{x \to -\infty} f(x) = -\infty$

b. On a
$$\lim_{x \to \frac{3}{2}} 2x^2 - x - 1 = 2$$
 et $\lim_{x \to \frac{3}{2}} 2x - 3 = 0$ Donc on obtient une forme indéterminée.

On étudie le signe de 2x - 3

x	- ∞	$\frac{3}{2}$ + ∞
2x - 3		+

Donc on a:
$$\lim_{x \to \frac{3^+}{2}} 2x - 3 = 0^+ \implies \lim_{x \to \frac{3^+}{2}} f(x) = +\infty$$
 et $\lim_{x \to \frac{3^-}{2}} 2x - 3 = 0^- \implies \lim_{x \to \frac{3^-}{2}} f(x) = -\infty$

Par conséquent, la droite d'équation $x = \frac{3}{2}$ est une asymptote verticale à la courbe C_f .

2. Etude des variations de la fonction f.

a. Calcul de la dérivée f'.

La fonction f est dérivable sur $\mathbb{R} \setminus \{\frac{3}{2}\}$ (en tant que fonction rationnelle)

f' est de la forme
$$\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$$
 avec $u(x) = 2x^2 - x - 1$ et $v(x) = 2x - 3$

$$u'(x) = 4x - 1$$

$$v'(x) = 2$$

$$\Rightarrow f'(x) = \frac{(4x-1)(2x-3)-2(2x^2-x-1)}{(2x-3)^2} = \frac{4x^2-12x+5}{(2x-3)^2}$$

b. Etudier son signe.

On a $(2x-3)^2 > 0$ pour tout $x \notin \mathbb{R} / \{\frac{3}{2}\} \Rightarrow f'(x)$ est du signe de $4x^2 - 12x + 5$

On calcule le discriminant $\Delta = 64 > 0 \Rightarrow 2$ racines réelles

$$x_1 = \frac{12 - 8}{8} = \frac{1}{2}$$
 et $x_2 = \frac{12 + 8}{8} = \frac{5}{2}$

le trinôme $4x^2 - 12x + 5$ est du signe de a = 4 à l'extérieur des racines

CORRIGE

x	- ∞		$\frac{1}{2}$		$\frac{3}{2}$		$\frac{5}{2}$		+ ∞
$4x^2 - 12x + 5$		+	0	_		_	0	+	
$(2x-3)^2$		+		+	0	+		+	
f'(x)		+	0	_		_	0	+	

c. Donner le tableau de variation de f.

x	- 8	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	+ ∞
f'(x)	+	0 -	- []	- 0	+
f'(x)	- 8	$\sqrt{\frac{1}{2}}$		$\frac{9}{2}$	▼ +∞

3. Coordonnées des points d'intersection de la courbe C_f avec les axes de coordonnées.

a. Intersection avec l'axe des ordonnées

On a $f(0) = \frac{1}{3}$ \Rightarrow les coordonnées du point d'intersection avec l'axe des abscisses A (0; $\frac{1}{3}$)

b. Intersection avec l'axe des abscisses

On doit résoudre $f(x) = 0 \Rightarrow 2x^2 - x - 1 = 0 \Rightarrow x = 1$ ou $x = \frac{1}{2}$ donc les coordonnées du point d'intersection avec l'axe des ordonnées B(1;0) et $C(\frac{1}{2};0)$

4. a.
$$f(x) = ax + b + \frac{c}{2x - 3} = \frac{(ax + b)(2x - 3) + c}{2x - 3} = \frac{2ax^2 + 2bx - 3ax - 3b + c}{2x - 3} = \frac{2x^2 - x - 1}{2x - 3}$$

En identifiant les coefficients, on obtient : 2a = 2, 2b - 3a = -1 et c - 3b = -1.

D'où
$$a = 1$$
 $b = 1$ et $c = 2$

Donc
$$f(x) = x + 1 + \frac{2}{2x - 3}$$

b. On calcule la limite de f(x)-(x+1) en $+\infty$ et en $-\infty$.

On a
$$\lim_{x \to +\infty} f(x) - (x+1) = \lim_{x \to +\infty} x + 1 + \frac{2}{2x-3} - (x+1) = \lim_{x \to +\infty} \frac{2}{2x-3}$$
 Or $\lim_{x \to +\infty} 2x - 3 = +\infty$

 $\Rightarrow \lim_{x \to +\infty} f(x) - (x+1) = 0$ Idem pour la limite en $-\infty$.

Donc la droite d'équation y = x + 1 est bien une asymptote à la courbe C_f

CORRIGE

c. Pour étudier la position de la droite Δ par rapport à la courbe C_f , on étudie le signe de f(x) - (x+1) c'est-à-dire de $\frac{2}{2x-3}$ qui est du signe de 2x-3

5					
X	- 8		$\frac{3}{2}$		8 +
f(x)-(x+1)		_		+	

Conclusion: sur] - ∞ ; $\frac{3}{2}$ [, la courbe C_f est en dessous de la droite Δ et sur] $\frac{3}{2}$; + ∞ [, la courbe C_f est au dessus de la droite Δ .

5. a. Point d'intersection des asymptotes : $\begin{cases} x = \frac{3}{2} \\ y = x + 1 \end{cases} \Rightarrow \begin{cases} x = \frac{3}{2} \\ y = \frac{3}{2} + 1 = \frac{5}{2} \end{cases}$

Le point d'intersection des deux asymptotes a pour coordonnées $S(\frac{3}{2}; \frac{5}{2})$

b. On a
$$f(3-x) = 3-x+1+\frac{2}{2(3-x)-3} = 4-x+\frac{2}{x-3}$$

$$\operatorname{donc} f(3-x) + f(x) = 5$$

Donc S est bien le centre de symétrie de la courbe Cf.

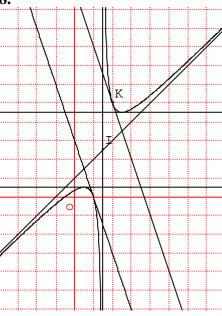
6. Equation de la tangente (T_1) au point U d'abscisse 1.

$$y = f'(1)(x-1) + f(1)$$
 or $f'(1) = -3$ et $f(1) = 0$ donc $(T_1): y = -3x + 3$

7. La courbe C_f admet un centre de symétrie donc elle admet une tangente T ' parallèle à la droite d'équation y=-3x+3 au point symétrie du point U (1; 0).

Donc le point K a pour coordonnées (2;5)

CORRIGE



- L'équation f(x) = m admet aucune solution lorsque $m \in \left[\frac{1}{2}, \frac{9}{2}\right]$
- L'équation f(x) = m admet une seule solution lorsque $m = \frac{1}{2}$ et pour $m = \frac{9}{2}$
- L'équation f(x) = m admet deux solutions lorsque $m \in \left] -\infty; \frac{1}{2} \right[\cup \left[\frac{9}{2}; +\infty \right] \right]$