Exercice 1

On considère les fonctions suivantes :

$$f_1:]-\infty, 0] \to \mathbb{R}$$

$$x \mapsto \sqrt{\frac{x}{x-1}}$$

$$f_2: [0, +\infty[\to \mathbb{R}]$$

$$x \mapsto \frac{x}{x+1}$$

$$\varphi_1:]-\infty, 0] \to \mathbb{R}$$

$$x \mapsto -x + \sqrt{x^2 - x}$$

$$\varphi_2: [0, +\infty[\to \mathbb{R}$$

$$x \mapsto \frac{-x^2}{2x+1}$$

- 1. a) Montrer que f_1 réalise une bijection de $]-\infty,0]$ sur [0,1[.
 - b) Déterminer $f_1^{-1}(x)$ pour tout x de [0,1].
- 2. a) Montrer que f_2 réalise une bijection de $[0,+\infty[$ sur [0,1[.
 - b) Expliciter $f_2^{-1}(x)$ pour tout x de [0,1].
- 3. a) Démontrer que $f_2^{-1} \circ f_1 = \varphi_1$ et que $\varphi_2 = f_1^{-1} \circ f_2$.
 - b) En déduire le sens de variation de φ_1 et celui de φ_2 .
- c) Montrer que les fonctions φ_1 et φ_2 sont réciproques l'une de l'autre. Qu'en déduit-on pour leurs courbes Γ_1 et Γ_2 représentations graphiques respectives, dans un repère orthonormé (O,\vec{i},\vec{j}) , des fonctions φ_1 et φ_2 ?

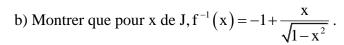
Exercice 2

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{x+1}{\sqrt{x^2 + 2x + 2}}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1. a) Calculer les limites de f en $+\infty$ et en $-\infty$.
 - b) En déduire que la courbe (C) admet deux asymptotes dont on donnera une équation.
- 2. Montrer que f est dérivable sur \mathbb{R} et que pour tout x réel,

$$f'(x) = \frac{1}{(x^2+2x+2)\sqrt{x^2+2x+2}}$$
.

3. a) En déduire que f réalise une bijection de $\,\mathbb{R}\,$ sur un intervalle J que 1'on précisera.



4. Tracer (C) et la courbe (C') de f⁻¹.

Exercice 3

On considère la fonction f définie sur $\left]0, \frac{\pi}{2}\right]$ par : $f(x) = \sqrt{2 \cot x}$

- 1. Montrer que f est dérivable sur $\left]0, \frac{\pi}{2}\right[$ puis calculer f '(x) pour x de $\left]0, \frac{\pi}{2}\right[$.
- 2. Etudier la dérivabilité de f à gauche en $\frac{\pi}{2}$.
- 3. Montrer que f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, +\infty\right[$.
- 4. Montrer que la fonction réciproque f^{-1} de f est dérivable sur $\left[0,+\infty\right[$ et que pour

x de
$$[0,+\infty[$$
, on a: $(f^{-1})'(x) = \frac{-4x}{4+x^4}$.

- 5. On pose pour tout x de $]0,+\infty[$, $g(x) = f^{-1}(\sqrt{2x}) + f^{-1}(\sqrt{\frac{2}{x}})$.
 - a) Calculer $f^{-1}(\sqrt{2})$.
 - b) Montrer que g est dérivable sur $]0,+\infty[$ et calculer g'(x).
 - c) En déduire que $g(x) = \frac{\pi}{2}$.

Exercice 1

1. a) la fonction $x \mapsto \frac{x}{x-1}$ est dérivable et strictement positive sur $]-\infty,0[$ donc f_1 est

dérivable sur]-\infty,0[. Pour tout x <0,
$$f_1'(x) = \frac{-\frac{1}{(x-1)^2}}{2\sqrt{\frac{x}{x-1}}} = -\frac{1}{2(x-1)^2}\sqrt{\frac{x}{x-1}} < 0$$
.

Ainsi f_1 est continue et strictement croissante sur $]-\infty,0]$ donc f_1 réalise une bijection de

$$\left]-\infty,0\right] \text{ sur } f_1\left(\left]-\infty,0\right]\right) = \left[f_1\left(0\right), \lim_{x\to+\infty}f_1\left(x\right)\right] = \left[0, \lim_{x\to+\infty}\sqrt{1+\frac{1}{x+1}}\right] = \left[0,1\right[.$$

b)
$$\begin{cases} x \le 0 \\ f_1(x) = y \end{cases} \Leftrightarrow \begin{cases} 0 \le y < 1 \\ f_1^{-1}(y) = x \end{cases}$$

$$\begin{split} f_1\left(x\right) &= y \Leftrightarrow \sqrt{\frac{x}{x-1}} = y \Leftrightarrow \sqrt{1 + \frac{1}{x-1}} = y \Leftrightarrow 1 + \frac{1}{x-1} = y^2 \Leftrightarrow \frac{1}{x-1} = y^2 - 1 \\ &\Leftrightarrow x - 1 = \frac{1}{y^2 - 1} \Leftrightarrow x = \frac{1}{y^2 - 1} + 1 \Leftrightarrow x = \frac{y^2}{y^2 - 1} \end{split}$$

Par suite, pour tout x de $[0,1[, f_1^{-1}(x)] = \frac{x^2}{x^2 - 1}$.

2. a)
$$f_2$$
 est dérivable sur $[0,+\infty[$ et pour tout x de $[0,+\infty[$, $f_2'(x) = \frac{1}{(x+1)^2} > 0$

D'où f_2 est continue et strictement croissante sur $[0,+\infty[$, c'est-à-dire que f_2 réalise une

bijection de
$$[0, +\infty[$$
 sur $f_2([0, +\infty[) = [f_2(0), \lim_{x} f_2[] = [0, \lim_{x \to +\infty} 1 - \frac{1}{x+1}[] = [0, 1[]$.

b)
$$\begin{cases} x \ge \\ f_2(x) = y \end{cases} \Leftrightarrow \begin{cases} 0 \le y < 1 \\ f_2^{-1}(y) = x \end{cases}$$

$$f_{2}(x) = y \Leftrightarrow \frac{x}{x+1} = y \Leftrightarrow 1 - \frac{1}{x+1} = y \Leftrightarrow \frac{1}{x+1} = 1 - y$$
$$\Leftrightarrow x + 1 = \frac{1}{1 - y} \Leftrightarrow x = \frac{1}{1 - y} - 1 \Leftrightarrow x = \frac{y}{1 - y}$$

Par suite, pour tout x de $[0,1[, f_2^{-1}(x)] = \frac{x}{1-x}$.

3. a) Pour tout x de $]-\infty,0]$,

$$f_{2}^{-1} \circ f_{1}(x) = f_{2}^{-1}(f_{1}(x)) = \frac{f_{1}(x)}{1 - f_{1}(x)} = \frac{\sqrt{\frac{x}{x - 1}}}{1 - \sqrt{\frac{x}{x - 1}}} = \frac{\sqrt{x}}{\sqrt{x - 1} - \sqrt{x}} = \frac{\sqrt{x}(\sqrt{x - 1} + \sqrt{x})}{(x - 1) - 1}$$
$$= \sqrt{x(x + 1)} - x = -x + \sqrt{x^{2} + x} = \varphi_{1}(x)$$

$$\begin{split} f_1^{-1} \circ f_2(x) &= f_1^{-1} \Big(f_2(x) \Big) = \frac{\Big(f_2(x) \Big)^2}{\Big(f_2(x) \Big)^2 - 1} = \frac{\left(\frac{x}{x+1} \right)^2}{\left(\frac{x}{x+1} \right)^2 - 1} = \frac{x^2}{x^2 - (x+1)^2} = \frac{x^2}{-2x-1} \\ &= \frac{-x^2}{2x+1} = \varphi_2(x) \end{split}$$

b) Pour tout x < 0, $\varphi_1'(x) = f_1'(x) \cdot (f_2^{-1})'(f_1(x)) < 0$ car $f_1'(x) < 0$ et $(f_2^{-1})'(f_1(x)) > 0$.

Donc φ_1 est strictement décroissante sur $]-\infty,0]$.

Pour tout $x \ge 0$ 0, $\varphi_2'(x) = f_2'(x) \cdot (f_1^{-1})'(f_2(x)) < 0$ car $f_2'(x) > 0$ et $(f_1^{-1})'(f_2(x)) < 0$.

Donc φ_2 est strictement décroissante sur $[0,+\infty[$.

c) On a:
$$\varphi_1^{-1} = (f_2^{-1} \circ f_1)^{-1} = f_1^{-1} \circ f_2 = \varphi_2$$
.

Ainsi, les fonctions φ_1 et φ_2 sont réciproques l'une de l'autre.

On en déduit que leurs courbes représentatives respectives Γ_1 et Γ_2 sont symétriques par rapport à la droite d'équation y = x.

Exercice 2:

1. a) Remarquons d'abord que pour tout x réel,
$$f(x) = \frac{x+1}{\sqrt{x^2 + 2x + 2}} = \frac{x\left(1 + \frac{1}{x}\right)}{|x|\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}}}$$

Ainsi,
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}}} = 1$$
 et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1 + \frac{1}{x}}{-\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}}} = -1$.

- b) La droite D : y = 1 st asymptote à (C) au voisinage de $+\infty$ et la droite D' : y = -1 est asymptote à (C) au voisinage de $-\infty$.
- 2. La fonction $x \mapsto x+1$ est dérivable sur \mathbb{R} .

La fonction $x \mapsto x^2 + 2x + 2 = (x+1)^2 + 1$ est dérivable et strictement positive sur $\mathbb R$ donc $x \mapsto \sqrt{x^2 + 2x + 2}$ est dérivable sur $\mathbb R$. D'où f est dérivable sur $\mathbb R$.

Pour tout x réel,

$$f'(x) = \frac{\sqrt{x^2 + 2x + 2} - (x+1)\frac{x+1}{\sqrt{x^2 + 2x + 2}}}{x^2 + 2x + 2} = \frac{x^2 + 2x + 2 - (x+1)^2}{(x^2 + 2x + 2)\sqrt{x^2 + 2x + 2}}$$
$$= \frac{1}{(x^2 + 2x + 2)\sqrt{x^2 + 2x + 2}}$$

3. a) f est continue et strictement croissante sur $\mathbb R$ donc f réalise une bijection de $\mathbb R$ sur

$$J = f\left(\mathbb{R}\right) = \left[\lim_{x \to -\infty} f\left(x\right), \lim_{x \to +\infty} f\left(x\right)\right] = \left]-1,1\right[.$$

b) Pour tout x de]-1,1[,

$$f \circ f^{-1}(x) = f \left[f^{-1}(x) \right] = \frac{f^{-1}(x) + 1}{\sqrt{\left[f^{-1}(x) \right]^2 + 2f^{-1}(x) + 2}}$$

$$= \frac{\frac{x}{\sqrt{1 - x^2}}}{\sqrt{\left(-1 + \frac{x}{\sqrt{1 - x^2}} \right)^2 + 2\left(-1 + \frac{x}{\sqrt{1 - x^2}} \right) + 2}}$$

$$= \frac{\frac{x}{\sqrt{1 - x^2}}}{\sqrt{1 + \frac{x^2}{1 - x^2}} - \frac{2x}{\sqrt{1 - x^2}} - 2 + \frac{2x}{\sqrt{1 - x^2}} + 2}$$

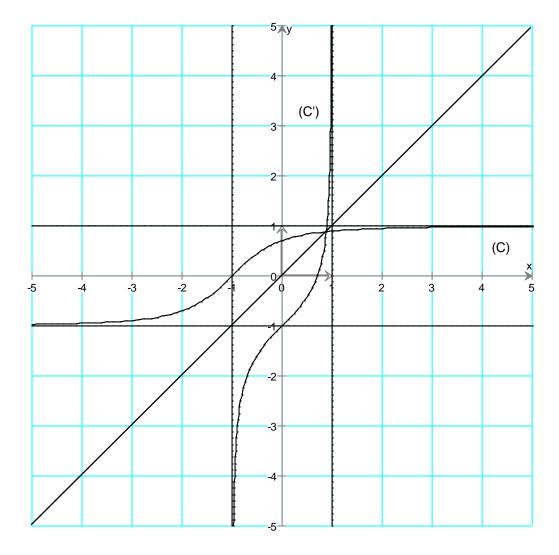
$$= \frac{\frac{x}{\sqrt{1 - x^2}}}{\frac{1}{\sqrt{1 - x^2}}}$$

$$= 1$$

Par suite, pour tout x de]-1, 1[, $f^{-1}(x) = -1 + \frac{x}{\sqrt{1-x^2}}$.

4. Les courbes (C) et (C') sont symétriques par rapport à la droite Δ : y = x.

X	$-\infty$ $+\infty$	
f'(x)	+	
f(x)	-1	



Exercice 3

1. La fonction $x \mapsto \cot x$ est dérivable et strictement positive sur $\left[0, \frac{\pi}{2}\right]$ donc f est

dérivable sur
$$\left]0, \frac{\pi}{2}\right[$$
 et pour tout x de $\left]0, \frac{\pi}{2}\right[$, $f'(x) = \frac{2\cot'(x)}{2\sqrt{2\cot x}} = \frac{-1-\cot^2 x}{\sqrt{2\cot x}}$.

$$2. \quad \lim_{x \to \frac{\pi}{2}^{-}} \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt{2\cot x}}{x - \frac{\pi}{2}} = \lim_{h \to 0^{+}} \frac{\sqrt{2\tan(h)}}{-h} = \lim_{h \to 0^{+}} -\sqrt{\frac{2}{h}} \cdot \sqrt{\frac{\tanh}{h}} = -\infty$$

Donc f n'est pas dérivable à gauche en $\frac{\pi}{2}$.

3. f est continue et strictement décroissante sur $\left]0, \frac{\pi}{2}\right]$ donc f réalise une bijection de $\left]0, \frac{\pi}{2}\right]$

$$\operatorname{sur} f\left(\left]0, \frac{\pi}{2}\right]\right) = \left[f\left(\frac{\pi}{2}\right), \lim_{x \to 0^{+}} f\left(x\right)\right] = \left[0, +\infty\right[.$$

4. f est dérivable sur $\left]0, \frac{\pi}{2}\right[$ et pour tout x de $\left]0, \frac{\pi}{2}\right[$, f'(x) < 0 donc f^{-1} est dérivable sur

$$f\left(\left[0,\frac{\pi}{2}\right]\right) = \left]0,+\infty\right[$$
.

On a:
$$\begin{cases} 0 < x < \frac{\pi}{2} & \Leftrightarrow & \begin{cases} y > 0 \\ f^{-1}(y) = x \end{cases} & \text{et} & (f^{-1})'(y) = \frac{1}{f'(x)} = -\frac{\sqrt{2\cot x}}{1 + \cot^2 x} \end{cases}$$

Or
$$y = \sqrt{2 \cot x} \Leftrightarrow 2 \cot x = y^2 \Leftrightarrow \cot x = \frac{y^2}{2}$$
, $\operatorname{donc} \left(f^{-1} \right)' \left(y \right) = -\frac{y}{1 + \left(\frac{y^2}{2} \right)^2} = -\frac{4y}{4 + y^4}$

Ainsi, pour tout x de $]0,+\infty[$, $(f^{-1})'(x) = \frac{-4x}{4+x^4}$.

Etudions à présent la dérivabilité de f^{-1} à droite en 0:

$$\lim_{y \to 0^{+}} \frac{f^{-1}(y) - f^{-1}(0)}{y - 0} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{x - \frac{\pi}{2}}{f(x) - f\left(\frac{\pi}{2}\right)} = \frac{1}{\lim_{x \to \frac{\pi}{2}^{-}} \frac{f(x) - f\left(\frac{\pi}{2}\right)}{x - \frac{\pi}{2}}} = 0 \quad \text{donc } f^{-1} \text{ est dérivable à}$$

droite en 0 et $(f^{-1})'(0) = 0$

Comme $(f^{-1})'(0) = 0 = -\frac{4 \times 0}{4 + 0^4}$ alors on peut conclure que f est dérivable sur $[0, +\infty[$ et que pour x de $[0, +\infty[$, on a : $(f^{-1})'(x) = \frac{-4x}{4 + x^4}$.

5. Pour tout x de
$$]0,+\infty[$$
, $g(x) = f^{-1}(\sqrt{2x}) + f^{-1}(\sqrt{\frac{2}{x}})$.

a) On a
$$f\left(\frac{\pi}{4}\right) = \sqrt{2\cot\frac{\pi}{4}} = \sqrt{2}$$
 et $\frac{\pi}{4} \in \left[0, \frac{\pi}{2}\right]$ par conséquent $f^{-1}\left(\sqrt{2}\right) = \frac{\pi}{4}$.

b) Les fonctions $x \mapsto \sqrt{2x}$ et $x \mapsto \sqrt{\frac{2}{x}}$ sont dérivables sur $]0,+\infty[$. D'autre part f^{-1} est

dérivable sur $]0,+\infty[$ donc les fonctions $x\mapsto f^{-1}\left(\sqrt{2x}\right)$ et $x\mapsto f^{-1}\left(\sqrt{\frac{2}{x}}\right)$ sont dérivables sur $]0,+\infty[$. Par suite, g est dérivable sur $]0,+\infty[$.

Pour tout x >0, g'(x) =
$$\frac{2}{2\sqrt{2x}} (f^{-1})' (\sqrt{2x}) + \left(-\frac{2}{x^2} \frac{2}{2\sqrt{\frac{2}{x}}}\right) (f^{-1})' (\sqrt{\frac{2}{x}})$$

= $\frac{1}{\sqrt{2x}} \cdot \left(-\frac{4\sqrt{2x}}{4+4x^2}\right) - \frac{1}{x^2\sqrt{\frac{2}{x}}} \cdot \left(-\frac{4\sqrt{\frac{2}{x}}}{4+\frac{4}{x^2}}\right)$
= $-\frac{1}{1+x^2} + \frac{1}{x^2} \cdot \frac{1}{1+\frac{1}{x^2}}$
= $-\frac{1}{1+x^2} + \frac{1}{1+x^2}$

c) La fonction g est donc constante sur l'intervalle $]0,+\infty[$ d'où il existe une réel c tel que pour tout x de $]0,+\infty[$, g(x)=c.

Or
$$g(1) = 2f^{-1}(\sqrt{2}) = \frac{\pi}{2}$$
 donc $c = \frac{\pi}{2}$.

Par suite, pour tout x de $]0,+\infty[$, $g(x) = \frac{\pi}{2}$.