Série : Translation

Exercice 1:

Soit ABC un triangle et I le milieu du segment [BC].

- 1. a) Placer les points J et K tels que $t_{\overline{AC}}(I) = J$ et $t_{\overline{AB}}(I) = K$.
 - b) Montrer que $\overrightarrow{BK} = \overrightarrow{CJ}$.
- 2. La droite (KJ) coupe (AC) en L.
 - a) Déterminer l'image de la droite (BC) par la translation de vecteur \overrightarrow{IJ} .
 - b) Déterminer l'image de la droite (AC) par la translation de vecteur \overrightarrow{IJ} .
 - c) Montrer que C est le milieu du segment [AL].
- 3. Montrer que $\overrightarrow{KL} = \frac{3}{2}\overrightarrow{BC}$.

Exercice 2:

Soit ABC un triangle, $E = t_{\overline{BA}}(C)$ et $F = t_{\overline{AC}}(B)$.

- 1. Placer les points E et F puis montrer que C est le milieu du segment [EF].
- 2. Soit I un point de la droite (BF) distinct de B et de F. La parallèle à la droite (CE) passant par I coupe la droite (AC) en un point J.

Déterminer $t_{\overline{BA}}(BF)$ et $t_{\overline{BA}}(IJ)$. En déduire $t_{\overline{BA}}(I)$.

3. Soit H le projeté orthogonal de C sur la droite (BF) et K le projeté orthogonal de E sur la droite (AC).

Déterminer $t_{\overline{BA}}((CH))$. En déduire $t_{\overline{BA}}(H)$.

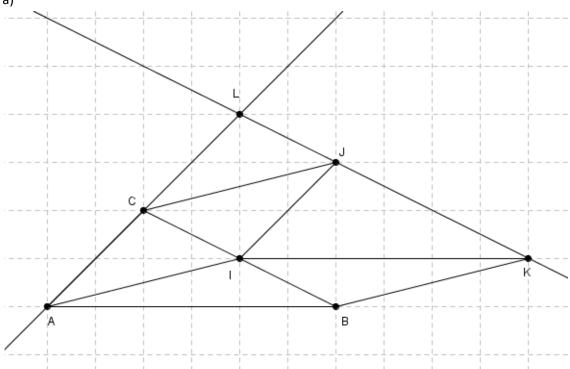
4. Soit ($\mathcal C$) le cercle de centre F passant par H.

Déterminer $\mathcal{C}' = \mathfrak{t}_{\overline{BA}}(\mathcal{C})$.

Série : Translation

Exercice 1:

1. a)



b) $t_{\overline{AC}}(I) = J$ signifie $\overrightarrow{IJ} = \overrightarrow{AC}$ ou encore IJCA est un parallélogramme d'où $\overrightarrow{CJ} = \overrightarrow{AI}$.

D'autre part : $t_{\overline{AB}}(I) = K$ signifie $\overline{IK} = \overline{AB}$ ou encore IKBA est un parallélogramme d'où $\overline{BK} = \overline{AI}$.

Il en résulte : $\overrightarrow{BK} = \overrightarrow{CJ}$.

2. a) $t_{\vec{i}\vec{j}}(BC)$ est la parallèle à la droite (BC) passant par $t_{\vec{i}\vec{j}}(I) = J$.

Or $\overrightarrow{BK} = \overrightarrow{CJ}$ donc BKJC est un parallélogramme d'où (JK) parallèle à la droite (BC). Par suite, $t_{\overrightarrow{IJ}}(BC) = (JK)$.

b) Les droite (IJ) et (AC) sont parallèle donc \overrightarrow{IJ} est un vecteur directeur de la droite (AC) par conséquent $t_{\overrightarrow{IJ}}(AC)=(AC)$.

c) Les droites (BC) et (AC) sont sécantes en C donc $t_{\overline{I}\overline{J}}(BC) = (JK)$ et $t_{\overline{I}\overline{J}}(AC) = (AC)$ sont sécantes en $t_{\overline{I}\overline{J}}(C)$.

Et comme (JK) et (AC) se coupent en L alors $t_{IJ}(C) = L$.

On a: $t_{\overline{I}\overline{I}}(C) = L$ et $t_{\overline{I}\overline{I}}(A) = C$ donc $\overrightarrow{CA} = \overrightarrow{LC}$.

Ainsi, C est le milieu du segment [AL].

Série : Translation

3. De $t_{\overline{I}\overline{I}}(C) = L$, on en déduit que IJLC est un parallélogramme ou encore $\overrightarrow{J}L = \overrightarrow{I}C = \frac{1}{2}\overrightarrow{B}C$.

IL en résulte que $\overrightarrow{KL} = \overrightarrow{KJ} + \overrightarrow{JL} = \overrightarrow{BC} + \frac{1}{2}\overrightarrow{BC} = \frac{3}{2}\overrightarrow{BC}$.

Exercice 2:

1. Voir figure ci-dessous.

$$E = t_{\overline{BA}}(C)$$
 signifie $\overrightarrow{CE} = \overrightarrow{BA}$

et $F = t_{\overline{AC}}(B)$ signifie que ABFC est un parallélogramme d'où $\overline{FC} = \overline{BA}$.

On en déduit : $\overrightarrow{CE} = \overrightarrow{FC}$ et par suite C est le milieu du segment [EF].

2. $t_{\overline{BA}}((BF))$ est la parallèle à la droite (BF) passant par $t_{\overline{BA}}(B) = A$ donc $t_{\overline{BA}}((BF)) = (AC)$.

La droite (IJ) est parallèle à la droite (EC) donc (IJ) est parallèle à (AB) d'où

 \overrightarrow{BA} est un vecteur directeur de la droite (IJ); il en résulte : $t_{\overrightarrow{BA}}((IJ))=(IJ)$.

On sait que (BF) coupe (IJ) en I donc $t_{\overline{BA}}(BF) = (AC)$ coupe $t_{\overline{BA}}(IJ) = (IJ)$ en $t_{\overline{BA}}(I)$.

Or (AC) coupe (IJ) en J, il en résulte : $t_{\overline{BA}}(I) = J$.

- 3. (CH) est la perpendiculaire à (BF) issue de C donc $t_{\overline{BA}}((CH))$ est la perpendiculaire à $t_{\overline{BA}}((BF)) = (AC)$ issue de $t_{\overline{BA}}(C) = E$.

 Ainsi $t_{\overline{BA}}(H) = H'$ est le projeté orthogonal de E sur (AC).
- 4. Comme $t_{\overline{BA}}(F) = C$ et $t_{\overline{BA}}(H) = H'$ alors $\mathcal{C}' = t_{\overline{BA}}(\mathcal{C})$ est le cercle de centre C passant par H'.

Mr ABIDI FARID 1A

Série : Translation

