Démontrer qu'un point est le milieu d'un segment

P1 Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment.	A H B	O appartient à [AB] et OA = OB donc O est le milieu de [AB].
P 2 Si un quadrilatère est un parallélogramme alors ses diagonales se coupent en leur milieu. (Ceci est aussi vrai pour les losanges, rectangles et carrés qui sont des parallélogrammes particuliers.)	D C B	ABCD est un parallélogramme donc ses diagonales [AC] et [BD] se coupent en leur milieu.
P 3 Si A et A' sont symétriques par rapport à un point O alors O est le milieu du segment [AA'].	A+A'	A et A' sont symétriques par rapport au point O donc le point O est le milieu de [AA'].
P 4 Si une droite est la médiatrice d'un segment alors elle coupe ce segment en son milieu.	A B	(d) est la médiatrice du segment [AB] donc (d) coupe le segment [AB] en son milieu.
P 5 Si un triangle est rectangle alors son cercle circonscrit a pour centre le milieu de son hypoténuse.	C A	ABC est un triangle rectangle d'hypoténuse [AB] donc le centre de son cercle circonscrit est le milieu de [AB].
P 6 Si, dans un triangle, une droite passe par le milieu d'un côté et est parallèle à un deuxième côté alors elle passe par le milieu du troisième côté.	A (d)	Dans le triangle ABC, l est le milieu de [AB] et la parallèle (d) à (BC) coupe [AC] en J donc J est le milieu de [AC].

Démontrer que deux droites sont parallèles

P7 Si deux droites sont parallèles à une même troisième droite alors elles sont parallèles entre elles.	$ (d_1) $ $ (d_3) $ $ (d_2) $	(d ₁) // (d ₂) et (d ₂) // (d ₃) donc (d ₁) // (d ₃).
P8 Si deux droites sont perpendiculaires à une même troisième droite alors elles sont parallèles entre elles.	(d_3) (d_1) (d_2)	$(d_1) \perp (d_3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
P 9 Si un quadrilatère est un parallélogramme alors ses côtés opposés sont parallèles. (Ceci est aussi vrai pour les losanges, rectangles et carrés qui sont des parallélogrammes particuliers.)	A B	ABCD est un parallélogramme donc (AB) // (CD) et (AD) // (BC).

$\frac{v}{w} = \frac{g}{t}$	Les droites (vt) et (uy) sont coupées par la sécante (zw) , \widehat{vGw} et \widehat{zEy} sont alternes-internes et de même mesure donc (vt) // (uy) .
$\frac{v}{u}$ $\frac{g}{E}$ $\frac{g}{v}$	Les droites (vt) et (uy) sont coupées par la sécante (zw) , \widehat{zGt} et \widehat{zEy} sont correspondants et de même mesure donc (vt) // (uy) .
A	Dans le triangle ABC, I est le milieu de [AB] et J est le milieu de [AC] donc (IJ) est parallèle à (BC).
(d) A O A B' B A' (d')	Les droites (d) et (d') sont symétriques par rapport au point O donc (d) // (d').
	Les points M, A, B d'une
	part et les points N, A, C
(d) M N (d')	d'autre part sont alignés dans le même ordre. Si, de plus, $\frac{AM}{\Delta R} = \frac{AN}{\Delta C}$,
C B	SI, de plus, $\overline{AB} = \overline{AC}$, alors d'après la réciproque du théorème de Thalès, les droites (MN) et (BC) sont parallèles.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Démontrer que deux droites sont perpendiculaires

P 15 Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre.	(d_3) (d_1) (d_2)	$(d_1) \perp (d_3) \text{ et } (d_1) \text{ // } (d_2) \\ donc \\ (d_2) \perp (d_3).$
P 16 Si un quadrilatère est un losange alors ses diagonales sont perpendiculaires. (Ceci est aussi vrai pour le carré qui est un losange particulier.)	$A \xrightarrow{\qquad \qquad \qquad } C$	ABCD est un losange donc (AC) \perp (BD).
P17 Si un quadrilatère est un rectangle alors ses côtés consécutifs sont perpendiculaires. (Ceci est aussi vrai pour le carré qui est un rectangle particulier.)	A B C	ABCD est un rectangle donc (AB) \perp (BC), (BC) \perp (CD), (CD) \perp (AD) et (AD) \perp (AB).

P 18 Si une droite est la médiatrice d'un segment alors elle est perpendiculaire à ce segment.	A B	(d) est la médiatrice du segment [AB] donc (d) est perpendiculaire à [AB].
P 19 Si une droite est tangente à un cercle en un point alors elle est perpendiculaire au rayon de ce cercle qui a pour extrémité ce point.	O (d)	(d) est tangente en M au cercle de centre O donc (d) est perpendiculaire à [OM].

Démontrer qu'un triangle est rectangle

P 20 Réciproque du théorème de Pythagore : Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors le triangle est rectangle et il admet ce plus grand côté pour hypoténuse.	A C	Dans le triangle ABC, BC ² = AB ² + AC ² donc le triangle ABC est rectangle en A.
P 21 Si dans un triangle, la longueur de la médiane relative à un côté est égale à la moitié de la longueur de ce côté alors ce triangle est rectangle et il admet ce côté pour hypoténuse.	A B O C	Dans le triangle ABC, O est le milieu de [BC] et $OA = \frac{BC}{2}$ donc le triangle ABC est rectangle en A.
P 22 Si un triangle est inscrit dans un cercle de diamètre l'un de ses côtés alors il est rectangle et il admet ce diamètre pour hypoténuse.	C A	C appartient au cercle de diamètre [AB] donc ABC est un triangle rectangle en C.

Démontrer qu'un quadrilatère est un parallélogramme

P 23 Si un quadrilatère a ses côtés opposés parallèles deux à deux alors c'est un parallélogramme.	D C	Dans le quadrilatère ABCD, (AB) // (CD) et (AD) // (BC) donc ABCD est un parallélogramme.
P 24 Si un quadrilatère a ses diagonales qui se coupent en leur milieu alors c'est un parallélogramme.	D C B	Dans le quadrilatère ABCD, les diagonales [AC] et [BD] se coupent en leur milieu. Donc ABCD est un parallélogramme.
P 25 Si un quadrilatère non croisé a deux côtés opposés parallèles et de même longueur alors c'est un parallélogramme.	D C	Dans le quadrilatère non croisé ABCD, (AD) // (BC) et AD = BC donc ABCD est un parallélogramme.

P 26 Si un quadrilatère non croisé a ses côtés opposés de la même longueur deux à deux alors c'est un parallélogramme.	D	Dans le quadrilatère non croisé ABCD, AB = CD et AD = BC donc ABCD est un parallélogramme.
P 27 Si un quadrilatère non croisé a ses angles opposés de la même mesure alors c'est un parallélogramme.	A B	Dans le quadrilatère non croisé ABCD, $\hat{A} = \hat{C}$ et $\hat{B} = \hat{D}$ donc ABCD est un parallélogramme.
P 28 Si un quadrilatère non croisé a un centre de symétrie alors c'est un parallélogramme.	A O B	O est centre de symétrie du quadrilatère ABCD donc ABCD est un parallélogramme.

Démontrer qu'un quadrilatère est un losange

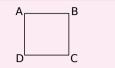
P 29 Si un quadrilatère a ses quatre côtés de la même longueur alors c'est un losange.	A C	Dans le quadrilatère ABCD AB = BC = CD = DA donc ABCD est un losange.
P 30 Si un parallélogramme a ses diagonales perpendiculaires alors c'est un losange.	A B C	ABCD est un parallélogramme et (AC) ⊥ (BD) donc ABCD est un losange.
P 31 Si un parallélogramme a deux côtés consécutifs de la même longueur alors c'est un losange.	A B C	ABCD est un parallélogramme et AB = BC donc ABCD est un losange.

Démontrer qu'un quadrilatère est un rectangle

P 32 Si un quadrilatère possède trois angles droits alors c'est un rectangle.	A B	ABCD possède trois angles droits donc ABCD est un rectangle.
P 33 Si un parallélogramme a ses diagonales de la même longueur alors c'est un rectangle.	A B	ABCD est un parallélogramme et AC = BD donc ABCD est un rectangle.
P 34 Si un parallélogramme possède un angle droit alors c'est un rectangle.	A B C C	ABCD est un parallélogramme et (AB) ⊥ (BC) donc ABCD est un rectangle.

Démontrer qu'un quadrilatère est un carré

P 35 Si un quadrilatère vérifie à la fois les propriétés du losange et du rectangle alors c'est un carré.



Déterminer la mesure d'un segment

P 36 Si un triangle est isocèle alors il a deux côtés de la même longueur.	C B	ABC est isocèle en A donc AB = AC.
P 37 Si un triangle est équilatéral alors il a tous ses côtés de la même longueur.	C B	ABC est équilatéral donc AB = AC = BC.
P 38 Si un quadrilatère est un parallélogramme alors ses côtés opposés ont la même longueur. (C'est également vrai pour les rectangles, les losanges et les carrés qui sont des parallélogrammes particuliers.)	A B	ABCD est un parallélogramme donc AB = CD et AD = BC.
P 39 Si un quadrilatère est un losange alors tous ses côtés sont de la même longueur. (C'est également vrai pour les carrés qui sont des losanges particuliers.)	$A \longrightarrow C$	ABCD est un losange donc AB = BC = CD = DA.
P 40 Si un quadrilatère est un rectangle alors ses diagonales ont la même longueur. (C'est également vrai pour les carrés qui sont des rectangles particuliers.)	A B C	ABCD est un rectangle donc AC = BD.
P 41 Si deux points appartiennent à un cercle alors ils sont équidistants du centre de ce cercle.	OX. B	A et B appartiennent au cercle de centre O donc OA = OB.
P 42 Si un point appartient à la médiatrice d'un segment alors il est équidistant des extrémités de ce segment.	M A B	M appartient à la médiatrice de [AB] donc MA = MB.
P 43 Si un point appartient à la bissectrice d'un angle alors il est situé à la même distance des côtés de cet angle.	P M y N z	M appartient à la bissectrice de l'angle \widehat{xOz} donc MN = MP.

P 44 Si deux segments sont symétriques	A	Les segments [AB] et [A'B'] sont symétriques par
par rapport à une droite alors ils ont la même longueur.	B (d) B	rapport à l'axe (d) donc AB = A'B'.
P 45 Si un cercle est l'image d'un autre cercle par une symétrie axiale ou centrale alors ils ont le même rayon.	(d) A'	Les cercles de centres A et A' sont symétriques par rapport à (d) donc ils ont le même rayon.
P 46 Si deux segments sont symétriques par rapport à un point alors ils ont la même longueur.	A B'	Les segments [AB] et [A'B'] sont symétriques par rapport au point O donc AB = A'B'.
P 47 Si, dans un triangle, un segment joint les milieux de deux côtés alors sa longueur est égale à la moitié de celle du troisième côté.	B	Dans le triangle ABC, I est le milieu de [AB] et J est le milieu de [AC] donc $IJ = \frac{BC}{2} \ .$
P 48 Théorème de Thalès : Soient deux droites (d) et (d') sécantes en A. B et M sont deux points de (d) distincts de A. C et N sont deux points de (d') distincts de A. Si les droites (BC) et (MN) sont parallèles alors $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}.$	M N C d'	Les droites (BM) et (CN) sont sécantes en A. (MN) est parallèle à (BC). Donc $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.
P 49 Théorème de Pythagore : Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.	B C	ABC est un triangle rectangle en A donc $BC^2 = AB^2 + AC^2$.
P 50 Si un triangle est rectangle alors la longueur de la médiane issue de l'angle droit a pour longueur la moitié de la longueur de l'hypoténuse.	B C	ABC est un triangle rectangle en A et I est le milieu de [BC] donc $AI = \frac{BC}{2}.$

Déterminer la mesure d'un angle

P 51 Si deux angles sont symétriques par rapport à une droite alors ils ont la même mesure.	$\begin{array}{c c} A & (d) \\ \hline x & \\ y & \\ \hline \end{array}$	\widehat{xAy} et $\widehat{x'A'y'}$ sont symétriques par rapport à l'axe (d) donc $\widehat{xAy} = \widehat{x'A'y'}$.
P 52 Si deux angles sont symétriques par rapport à un point alors ils ont la même mesure.	x A y' Y A Y Y	\widehat{xAy} et $\widehat{x'A'y'}$ sont symétriques par rapport au point O $\widehat{xAy} = \widehat{x'A'y'}$.
P 53 Si un quadrilatère est un parallélogramme alors ses angles opposés ont la même mesure. (C'est également vrai pour les losanges, les rectangles et les carrés qui sont des parallélogrammes particuliers.)	D C	ABCD est un parallélogramme donc ĀBC = CDA et DAB = BCD .
P 54 Dans un triangle, la somme des mesures des angles est égale à 180°.	A C	Dans le triangle ABC, $\widehat{BAC} + \widehat{ABC} + \widehat{ACB} = 180^{\circ}$.
P 55 Si un quadrilatère est un parallélogramme alors deux de ses angles consécutifs sont supplémentaires.	D C	ABCD est un parallélogramme donc CDA + DAB = 180°.
P 56 Si un triangle est rectangle alors ses angles aigus sont complémentaires.	B A	ABC est un triangle rectangle en A donc $\widehat{ABC} + \widehat{ACB} = 90^{\circ}$.
P 57 Si un triangle est isocèle alors ses angles à la base ont la même mesure.	C B	ABC est un triangle isocèle en A donc ABC = ACB .
P 58 Si un triangle est équilatéral alors ses angles mesurent 60°.	A B	ABC est un triangle équilatéral donc $\widehat{A} = \widehat{B} = \widehat{C} = 60^{\circ}.$
P 59 Si deux angles sont opposés par le sommet alors ils ont la même mesure.	A O E	Les angles \widehat{AOB} et \widehat{DOE} sont opposés par le sommet donc $\widehat{AOB} = \widehat{DOE}$.

P 60 Si deux droites parallèles sont coupées par une sécante alors les angles alternes-internes qu'elles forment sont de même mesure.	$\frac{G}{v}$ $\frac{d}{dv}$ $\frac{d}{dv}$ $\frac{d}{dv}$ $\frac{d}{dv}$ $\frac{d}{dv}$	Les angles alternes-internes sont déterminés par les droites (vt) et (uy) qui sont parallèles et la sécante (zw) donc $\widehat{vGw} = \widehat{zEy}$.
P 61 Si deux droites parallèles sont coupées par une sécante alors les angles correspondants qu'elles forment sont de même mesure.	$\frac{G}{v}$ $\frac{t}{u}$ E v	Les angles correspondants sont déterminés par les droites (vt) et (uy) qui sont parallèles et la sécante (zw) donc $\widehat{zGt} = \widehat{zEy}$.
P 62 Si une droite est la bissectrice d'un angle alors elle partage l'angle en deux angles adjacents de même mesure.	/ 7	La droite (Oz) est la bissectrice de l'angle \widehat{xOy} donc $\widehat{xOz} = \widehat{zOy}$.
P 63 Si deux angles sont inscrits dans un même cercle et s'ils interceptent le même arc de cercle alors ils ont la même mesure.	L E	Les angles OTE et OLE sont inscrits dans le cercle C. Ils interceptent tous les deux l'arc AB. Donc ils ont la même mesure.
P 64 Si un angle inscrit dans un cercle et un angle au centre interceptent le même arc de cercle, alors l'angle au centre mesure le double de l'angle inscrit.		Dans le cercle \mathcal{C} , l'angle inscrit \widehat{ClL} et l'angle au centre \widehat{COL} interceptent le même arc \widehat{AB} . Donc l'angle au centre \widehat{COL} mesure le double de l'angle inscrit \widehat{ClL} . $\widehat{COL} = 2 \times \widehat{ClL}$.

Démontrer avec les droites remarquables du triangle

P 65 Si deux points sont symétriques par rapport à une droite alors cette droite est la médiatrice du segment ayant pour extrémités ces deux points.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M' est le symétrique de M par rapport à la droite (d) donc (d) est la médiatrice du segment [MM'].
P 66 Si un point est équidistant des extrémités d'un segment alors il est situé sur la médiatrice de ce segment.		MA = MB donc M appartient à la médiatrice du segment [AB].

P 67 Si dans un triangle, une droite passe par un sommet et est perpendiculaire au côté opposé alors c'est une hauteur du triangle.	A (d) B	Dans le triangle ABC, (d) passe par le sommet C et est perpendiculaire au côté opposé [AB] donc (d) est une hauteur du triangle ABC.
P 68 Si dans un triangle, une droite passe par un sommet et par le milieu du côté opposé alors c'est une médiane du triangle.	A (d) B	Dans le triangle ABC, (d) passe par le sommet C et par le milieu du côté opposé [AB] donc (d) est une médiane du triangle ABC.
P 69 Si une droite partage un angle en deux angles égaux alors cette droite est la bissectrice de l'angle.	y y	$\widehat{xOy} = \widehat{yOz}$ donc (Oy) est la bissectrice de l'angle \widehat{xOz} .
P 70 Si un point est situé à la même distance des côtés d'un angle alors il appartient à la bissectrice de cet angle.	P M y N z	$\begin{array}{l} MP = MN \\ donc \ M \ appartient \\ a \ la \ bissectrice \\ de \ l'angle \ \widehat{xOz}. \end{array}$