

# Congruence (3)

### **Exemple 1:** Montrez que pour tout entier naturel $n_i$ , $3^{n+3}$ - $4^{4n+2}$ est divisible par 11.

Nous savons traiter ce type de question à l'aide du "principe de récurrence" Les congruences, comme nous allons le constater, offre une approche plus simple et plus générale pour ce type de problème.

Soit  $n \in \mathbb{N}$ , on a:

$$3^{n+3} - 4^{4n+2} = 3^3 \cdot 3^n - 4^2 \cdot (4^4)^n$$

Or 
$$3^3 = 5$$
 [11];  $4^2 = 6$ [11] et  $4^4 = 3$ [11] (et donc  $(4^4)^n = 3^n$  [11])

Alors, 
$$3^3.3^n \equiv 5.3^n [11]$$
 et  $4^2.(4^4)^n \equiv 6.3^n [11]$ 

II vient que, 
$$3^{n+3} - 4^{4n+2} = 5.3^n + 6.3^n$$
 [11]

C'est-à-dire 
$$3^{n+3} - 4^{4n+2} = 11.3^n [11]$$

Et puisque 
$$11.3^n = 0 [11]$$
, on déduit que  $3^{n+3} - 4^{4n+2} = 0 [11]$ 

En d'autres termes,  $3^{n+3}$  -  $4^{4n+2}$  est divisible par 11 pour tout entier naturel n

## **Exemple 2:** Montrez que pour tout entier naturel $n_i$ , $6^n + 13^{n+1}$ est divisible par 7

Soit  $n \in \mathbb{N}$ , on a:

$$13 = 6 [7]$$
 et donc  $13^{n+1} = 6^{n+1} [7]$ 

Alors 
$$6^n + 13^{n+1} \equiv 6^n + 6^{n+1}$$
 [7]

Or 
$$6^n + 6^{n+1} = 6^n (1+6) = 7.6^n$$
.

Et puisque  $7.6^n \equiv 0$  [7], on déduite que  $6^n + 13^{n+1} \equiv 0$  [7]

Autrement dit,  $6^n + 13^{n+1}$  est divisible par 7 pour tout entier naturel n

### Exemple 3 : Démontrez que pour tout entier naturel n, n(n4 - 1) est un multiple de 5

Soit  $n \in \mathbb{N}$ ,

On peut raisonner en utilisant les restes possibles dans la division euclidienne de n par 5. Pour tout entier n, on a: n = 0 [5] ou n = 1 [5] ou n = 2 [5] ou n = 3 [5] ou n = 4 [5]

- ▶ Si n = 0 [5], alors  $n^5 = 0$  [5] et donc  $n^5 n = 0$  [5] c'est-à-dire  $n(n^4 1) = 0$  [5] ▶ Si n = 1 [5], alors  $n^5 = 1$  [5] et donc  $n^5 n = 0$  [5] c'est-à-dire  $n(n^4 1) = 0$  [5] ▶ Si n = 2 [5], alors  $n^5 = 2^5$  [5] et donc  $n^5 n = 0$  [5] c'est-à-dire  $n(n^4 1) = 0$  [5] Or  $2^5 = 32$  et 32 = 2[5]

Il vient, par transitivité que  $n^5 = 2 [5]$ 

n = 2[5] et  $n^5 = 2[5]$  entraine alors que  $n^5 - n = 0[5]$  c'est-à-dire  $n(n^4 - 1) = 0[5]$ 

- ▶ Si n  $\equiv$  3 [5], alors ...
- ▶ Si n  $\equiv$  4 [5], alors ...

On déduit en définitive que pour tout entier naturel n,  $n(n^4 - 1) = 0$  [5]

En d'autres termes, pour tout entier naturel n,  $n(n^4 - 1)$  est un multiple de 5

Remarque : il est courant d'illustrer le raisonnement précédent à l'aide d'un tableau où on fait figurer les restes possibles dans la division euclidienne par 5. On obtient ainsi :

|                        | différents restes possibles dans la division euclidienne par 5 |   |   |   |   |  |  |
|------------------------|----------------------------------------------------------------|---|---|---|---|--|--|
| n                      | 0                                                              | 1 | 2 | 3 | 4 |  |  |
| n <sup>5</sup>         | 0                                                              | 1 | 2 | 3 | 4 |  |  |
| $n^5 - n = n(n^4 - 1)$ | 0                                                              | 0 | 0 | 0 | 0 |  |  |

Il résulte de ce tableau que pour tout entier naturel n,  $n(n^4 - 1) = 0$  [5]

## Congruence (3)

### Exemple 4:

- 1. Trouvez, suivant les valeurs de l'entier naturel n, le reste de la division euclidienne de  $3^n$  par 8.
- 2. Quel est l'ensemble des entiers naturels n tels que le nombre  $3^n \cdot n 9n + 2$  soit divisible par 8? (Autrement dit, résoudre dans  $\mathbb{N}$  "l'équation"  $:3^n \cdot n 9n + 2 = 0$  [8])
- 1. Soit  $n \in \mathbb{N}$ , on a :

$$3^0 = 1 [8]$$
;  $3^1 = 3 [8]$ ;  $3^2 = 1 [8]$ 

Il vient alors que pour tout entier naturel k,  $3^{2k} \equiv 1$  [8] et  $3^{2k+1} \equiv 3$  [8]

Les restes possibles par la division euclidienne de 3<sup>n</sup> par 8 sont donc 1 ou 3 suivant que n soit pair ou impair.

- 2. Soit  $n \in \mathbb{N}$ , on a:
  - ▶ Si n = 2k (n est pair), alors  $3^n = 1$  [8] et donc  $3^n . n = n$  [8]  $3^n . n 9n + 2 = n 9n + 2$  [8]  $3^n . n 9n + 2 = -8n + 2$  [8]  $3^n . n 9n + 2 = 2$  [8] (car 8n = 0) [8])

Donc, il n'y a pas d'entier naturel pair tel que  $3^n \cdot n - 9n + 2 = 0$  [8]

▶ n = 2k+1 (n est impair), alors  $3^n = 3[8]$  et donc  $3^n \cdot n = 3n[8]$ 

$$3^{n}.n - 9n + 2 = 3n - 9n + 2 [8]$$
  
 $3^{n}.n - 9n + 2 = -6n + 2 [8]$   
 $3^{n}.n - 9n + 2 = 2n + 2 [8]$  (car  $-6 = 2 [8]$ )  
 $3^{n}.n - 9n + 2 = 2(n + 1) [8]$ 

Il vient alors que :  $3^n \cdot n - 9n + 2 = 0 [8] \Leftrightarrow 2(n+1) = 0 [8]$ 

On achève l'exercice en dressant un tableau des reste ossibles dans la division euclidienne ar 8

|          | différents restes possibles dans la division euclidienne par 8 |   |   |   |  |  |
|----------|----------------------------------------------------------------|---|---|---|--|--|
| n        | 1                                                              | 3 | 5 | 7 |  |  |
| n + 1    | 2                                                              | 4 | 6 | 0 |  |  |
| 2(n + 1) | 4                                                              | 0 | 4 | 0 |  |  |

N'oubliez pas que n est impair

Donc  $3^n \cdot n - 9n + 2 = 0 [8] \Leftrightarrow n = 3 [8]$  ou n = 7 [8]

**Conclusion :** I'ensemble des entiers naturels n tels que le nombre  $3^n \cdot n - 9n + 2$  soit divisible par 8 est  $S = \{n = 8k + 3 ; n = 8k + 7 ; k \in \mathbb{N}\}$ 

#### Exemple 5:

Déterminer le reste de la division euclidienne par 5 de :  $a = 2^{3562}$ ,  $b = (3722)^{763}$ ,  $c = (6753)^{811}$ 

Pour  $a = 2^{3562}$ , commençons par étudier les restes de la division euclidienne de  $2^n$  par 5.

Soit  $n \in \mathbb{N}$ , on a:

$$2^{0} \equiv 1 \ [5]$$
;  $2^{1} \equiv 2 \ [5]$ ;  $2^{2} \equiv 4 \ [5]$ ;  $2^{3} \equiv 3 \ [5]$ ;  $2^{4} \equiv 1 \ [5]$ 

Il vient alors que pour tout entier naturel k,  $2^{4k} \equiv 1 \ [5]$  ;  $2^{4k+1} \equiv 2 \ [5]$  ;  $2^{4k+2} \equiv 4 \ [5]$  ;  $2^{4k+3} \equiv 3 \ [5]$  On a par ailleurs,  $a = 2^{3562} = 2^{4x890+2}$ . On déduit de ce qui précède que  $2^{3562} \equiv 4 \ [5]$ 

Pour b =  $(3722)^{763}$ , commençons par déterminer le restes de la division euclidienne de 3722 par 5. on a : 3722 = 2 [5]

Il vient alors que,  $(3722)^{763} \equiv 2^{763} [5]$ 

Et puisque  $2^{763} = 2^{4 \times 190 + 3}$ , on déduit de ce qui précède que  $2^{763} = 3$  [5] et par suite  $(3722)^{763} = 3$  [5]

A vous de jouer pour  $c = (6753)^{811}$ 



# Congruence (3)

**Exemple 6 :** Déterminez l'ensemble des x entiers relatifs tels que :  $x^2 + 3x$  soit divisible par 7 Soit  $n \in \mathbb{Z}$ , dressons un tableau des restes possibles dans la division euclidienne par 7

|                | différents restes possibles dans la division euclidienne par 5 |   |   |   |   |   |   |  |
|----------------|----------------------------------------------------------------|---|---|---|---|---|---|--|
| Х              | 0                                                              | 1 | 2 | 3 | 4 | 5 | 6 |  |
| x <sup>2</sup> | 0                                                              | 1 | 4 | 2 | 2 | 4 | 1 |  |
| 3x             | 0                                                              | 3 | 6 | 9 | 5 | 1 | 4 |  |
| $x^{2} + 3x$   | 0                                                              | 4 | 3 | 4 | 0 | 5 | 5 |  |

Il ressort que  $x^2 + 3x$  est divisible par 7 si et seulement si x = 0 [7] ou x = 4 [7]

l'ensemble des entiers x tels que le nombre  $x^2 + 3x$  soit divisible par 7 est

$$S = \{x = 7k ; x = 7k + 4 ; k \in \mathbb{Z}\}$$

Remarque : Nous verrons plus tard avec le chapitre sur les nombres premiers entre eux qu'il est encore plus facile de résoudre ce type d'exercice avec le théorème de Gauss.

En effet :  $x^2 + 3x = 0 [7] \Leftrightarrow x(x + 3) = 0 [7]$ 

Et puisque 7 est premier, d'après le théorème de Gauss, il ne peut diviser un produit d'entiers que si il divise au moins un de ces entiers.

On a donc: x = 0 [7] ou x + 3 = 0 [7] c'est-à-dire x = 0 [7] ou x - 4 = 0 [7] (par ajout de -7)

D'où :  $x^2 + 3x = 0$  [7]  $\Leftrightarrow x = 7k ; x = 7k + 4 ; k \in \mathbb{Z}$